Abstract

Scaffolds prepared using extracellular matrices of mammalian organs/tissues, when used as grafts, have wound healing potential. This paper evaluated the physical properties and invivo wound healing potential of jejunum-derived scaffold (JDS) and urinary bladder-derived scaffold (UDS) of porcine origin prepared by a non-detergent/enzymatic method. The former had higher flexural rigidity and suture retention strength compared to the latter, but both of them had the essential flexural rigidity and suture retention strength required for skin grafts. Full thickness skin-wounds on rabbit dorsum were treated with these scaffolds and the wound healing ability was compared by studying histomorphology parameters such as re-epithelialisation, collagen deposition, angiogenesis, proliferation of cells, mesenchymal cell infiltration and myofibroblast response. The extent of these reactions was assessed using histomorphometry. The results indicated that both grafts initiated healing faster than those wounds without any graft, as evidenced by the extent of cell proliferation and mesenchymal cell infiltration. The myofibroblast response persisted longer in the non-graft assisted wound healing reaction compared to the healing in the graft assisted wounds. Moreover, the JDS induced higher cell proliferation and greater angiogenesis than UDS probably indicating better healing by the former. The results suggested that JDS and UDS prepared by non-detergent/enzymatic method have potential clinical applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.