Abstract

Biocompatible fibrous scaffold containing polyvinyl alcohol (PVA), 70S30C bioactive glass (BG), silver (Ag) nanoparticles and curcumin (Cur) was fabricated through electrospinning method. Scanning electron microscope (SEM) and Field emission scanning electron microscopy (FESEM) were employed to investigate the morphological characteristics of the scaffolds. In addition, biodegradability, hydrophilicity, and contact angle were studied as criteria for evaluating physical properties of the scaffolds. Tensile strength was reported to be 0.971 ± 0.093 MPa. Also, the viability of fibroblasts after 7 days of cell culture was 93.58 ± 1.36 %. The antibacterial activity against Escherichia coli and Staphylococcus aureus bacteria was illustrated using inhibition zones of 13.12 ± 0.69 and 14.21 ± 1.37 mm, respectively. Histological results revealed that tissue regeneration after 14 days of surgery was much higher for the dressing group compared to the blank group. According to the obtained results, the authors introduce the PVA-BG-Ag-Cur scaffold as a promising candidate for skin tissue engineering applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.