Abstract

Human corneal epithelial cells respond rapidly following injury to restore the integrity of the ocular surface. What stimulates and guides cells to move into the wound to heal? One candidate is the wound-induced electric field. Using vibrating probe techniques, we provide detailed temporal and spatial mapping of endogenous electric currents at rat corneal wounds. We find Cl- and Na+ are the major components of electric currents in rat corneal wounds. Na+ is the major component of ionic transport in the resting (nonwounded) rat cornea and of the wound center leakage current, whereas Cl- is a more important component of the endogenous electrical current at the wound edges. Enhancing or decreasing Cl- flow with clinically approved pharmacological agents such as aminophylline, ascorbic acid, or furosemide increased or decreased endogenous wound electric currents, respectively. These changes in wound currents correlated directly with the rate of wound healing in vivo. Thus, pharmacologically enhancing or decreasing wound-induced electric currents increased and decreased wound healing rate, respectively. This may have wide-reaching and novel therapeutic potential in the management of wound healing and may help explain some mechanistic aspects of the effects of some clinically used agents.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.