Abstract

All species of the Ophiuroidea have exceptional regenerative capabilities; in particular, they can replace arms lost following traumatic or self-induced amputation. In order to reconstruct this complex phenomenon, we studied arm regeneration in two different ophiuroids, Ophioderma longicaudum (Retzius, 1805) and Amphiura filiformis O. F. Muller, 1776, which are quite distantly related. These species present contrasting regeneration and differentiation rates and differ in several ecological traits. The aim of this paper is to interpret the primary sequence of morphogenetic and histogenetic events leading to the complete reconstruction of a new arm, comparing the arm regenerative processes of these two ophiuroid species with those described in crinoids. Arm regeneration in ophiuroids is considered an epimorphic process in which new structures develop from a typical blastema formed from an accumulation of presumptive undifferentiated cells. Our results showed that although very different in some respects such as, for instance, the regeneration rate (0.17 mm/week for O. longicaudum and 0.99 mm/week for A. filiformis), morphogenetic and histogenetic aspects are surprisingly similar in both species. The regenerative process presents similar characteristics and follows a developmental scheme which can be subdivided into four phases: a repair phase, an early regenerative phase, an intermediate regenerative phase and an advanced regenerative phase. In terms of histogenesis, the regenerative events involve the development of new structures from migratory pluripotent cells, which proliferate actively, in addition in both cases there is a significant contribution from dedifferentiated cells, in particular dedifferentiating myocytes, although to varying extents. This evidence confirms the plasticity of the regenerative phenomenon in echinoderms, which can apparently follow different pathways in terms of growth and morphogenesis, but nevertheless involve both epimorphic and morphallactic contributions at the cellular level.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.