Abstract

Wound healing after graft closure of excised burn wounds is a critical factor in the recovery process after thermal injury. Processes that speed time to stable wound closure should lead to improved outcomes, shorter lengths of hospital stays, and decreased complications. A randomized clinical trial to test the ability of continuous direct anodal microcurrent application to silver nylon wound contact dressings was designed. Time for wound closure after split-thickness skin grafting was observed. Thirty patients with full-thickness thermal burns were randomized into two groups. The control group received postoperative dressing care using moistened silver nylon fabric covered with gauze after tangential burn wound excision and split-thickness skin grafting. The study group received an identical protocol with the addition of continuous direct anodal microcurrent application. Time to 95% wound closure was measured using digital photography. The digital photographs were evaluated by a burn surgeon blinded to the patient's randomization. An independent t-test was used to analyze the data. The study group experienced a 36% reduction in time to wound closure (mean of 4.6 days) as compared to the control group (mean of 7.2 days). This was statistically significant at a P value of <.05. The use of continuous direct anodal microcurrent decreased time to wound closure after split-thickness skin grafting.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call