Abstract
AbstractDecreasing antenna size is considered a potential option for improving photosynthesis and increasing yield potential. Reducing chlorophyll content has been employed as a strategy to decrease antenna size. One of the commonly mentioned advantages of this approach is its ability to enhance crop nitrogen use efficiency (NUE); however, there is limited field evidence supporting this claim. In this study, we utilized a rice mutant called p35s‐Ami‐YGL1, which exhibits lower chlorophyll content and smaller antenna size, to investigate the effects of modifying leaf chlorophyll content on tissue nitrogen content and NUE. Our results demonstrate that the nitrogen contents in various tissues, including seed tissue, increased on a weight basis in p35s‐Ami‐YGL1 mutants while exhibiting a decrease in C:N ratio. Simultaneously, we observed a reduction in tissue carbon content along with an increase in the levels of chlorophyll precursors such as Proto IX. Specifically, we observed an upregulation in the expression of genes associated with photosynthetic light reactions and chlorophyll metabolism, while there was no increase in the expression of genes involved in the CBB cycle and nitrogen metabolism. In addition, p35s‐Ami‐YGL1 experienced increased photodamage. These findings suggest that the alterations in the C:N ratio and nitrogen content in plants may be attributed to Proto IX‐mediated photodamage and chloroplast reverse transduction signaling. Besides, these results suggest that the observed increase in tissue nitrogen content in p35s‐Ami‐YGL1 does not reflect an increase in plant nitrogen absorption or use efficiency, rather it is a result of stunted carbon fixation capacity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.