Abstract

Wortmannin is a widely used pharmaceutical compound which is employed to define vesicular trafficking routes of particular proteins or cellular compounds. It targets phosphatidylinositol 3-kinase and phosphatidylinositol 4-kinases in a dose-dependent manner leading to the inhibition of protein vacuolar sorting and endocytosis. Combined proteomics and cell biological approaches have been used in this study to explore the effects of wortmannin on Arabidopsis root cells, especially on proteome and endomembrane trafficking. On the subcellular level, wortmannin caused clustering, fusion, and swelling of trans-Golgi network (TGN) vesicles and multivesicular bodies (MVBs) leading to the formation of wortmannin-induced multivesicular compartments. Appearance of wortmannin-induced compartments was associated with depletion of TGN as revealed by electron microscopy. On the proteome level, wortmannin induced massive changes in protein abundance profiles. Wortmannin-sensitive proteins belonged to various functional classes. An inhibition of vacuolar trafficking by wortmannin was related to the downregulation of proteins targeted to the vacuole, as showed for vacuolar proteases. A small GTPase, RabA1d, which regulates vesicular trafficking at TGN, was identified as a new protein negatively affected by wortmannin. In addition, Sec14 was upregulated and PLD1 alpha was downregulated by wortmannin.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.