Abstract

With the wide application of cyber-physical systems, stealthy attacks on remote state estimation have attracted increasing research attention. Recently, various stealthy innovation-based linear attack models were proposed, in which the relaxed stealthiness constraint was based on the Kullback–Leibler divergence. This article studies existing innovation-based linear attack strategies with relaxed stealthiness and concludes that all of them provided merely suboptimal solutions. The main reason is some oversight in solving the involved optimization problems: some covariance constraints were not perfectly handled. This article provides the corresponding optimal solutions for those stealthy attacks. Both one-step and holistic optimizations of stealthy attacks are studied, and the worst-case attacks with and without zero-mean constraints are derived analytically, without the necessity to numerically solve semidefinite programming problems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.