Abstract

In this paper, a reinforcement learning approach for designing feedback neural network controllers for nonlinear systems is proposed. Given a Signal Temporal Logic (STL) specification which needs to be satisfied by the system over a set of initial conditions, the neural network parameters are tuned in order to maximize the satisfaction of the STL formula. The framework is based on a max-min formulation of the robustness of the STL formula. The maximization is solved through a Lagrange multipliers method, while the minimization corresponds to a falsification problem. We present our results on a vehicle and a quadrotor model and demonstrate that our approach reduces the training time more than 50 percent compared to the baseline approach.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.