Abstract
In the analysis of uncertain systems, we often search for a worst case perturbation that drives the <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$H_\infty $ </tex-math></inline-formula> gain of the system to the maximum over the set of allowable uncertainties. Employing the classical technique, an uncertainty sample is obtained, which, indeed, maximizes the gain but only at the single frequency where that maximum occurs. In contrast, this article considers a method to calculate a worst case perturbation that maximizes the gain of a system with mixed uncertainty at multiple frequencies simultaneously. This approach involves a nonlinear optimization that selects the worst case value of the uncertain parameters and the application of the boundary Nevanlinna–Pick interpolation to calculate the dynamic uncertainty sample. Such a perturbation can be used to augment Monte Carlo simulations of uncertain systems, especially if the system has multiple resonance frequencies. The worst case analysis of a flutter control system designed for a small flexible aircraft is provided to demonstrate the applicability of the proposed method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.