Abstract
The worst-case evaluation complexity of finding an approximate first-order critical point using gradient-related non-monotone methods for smooth non-convex and unconstrained problems is investigated. The analysis covers a practical linesearch implementation of these popular methods, allowing for an unknown number of evaluations of the objective function (and its gradient) per iteration. It is shown that this class of methods shares the known complexity properties of a simple steepest-descent scheme and that an approximate first-order critical point can be computed in at most ) function and gradient evaluations, where is the user-defined accuracy threshold on the gradient norm.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.