Abstract

The development and application of the differential evolution (DE) optimisation algorithm to the problem of worst-case analysis of nonlinear control laws for hypersonic re-entry vehicles is described. The algorithm is applied to the problem of evaluating a proposed nonlinear handling qualities clearance criterion for a detailed simulation model of a hypersonic re-entry vehicle (also known as a reusable launch vehicle (RLV)) having a full-authority nonlinear dynamic inversion (NDI) flight control law. A hybrid version of the differential evolution algorithm, incorporating local gradient-based optimisation, is also developed and evaluated. Comparisons of computational complexity and global convergence properties reveal the significant benefits which may be obtained through hybridisation of the standard differential evolution algorithm. The proposed optimisation-based approach to worst-case analysis is shown to have significant potential for improving both the reliability and efficiency of the flight clearance process for next generation RLV’s.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.