Abstract
A real industrial production phenomenon, referred to as learning effects, has drawn increasing attention. However, most research on this issue considers only single machine problems. Motivated by this limitation, this paper considers flow shop scheduling problems with an exponential learning effect. By the exponential learning effect, we mean that the processing time of a job is defined by an exponent function of its position in a processing permutation. The objective is to minimize one of the four regular performance criteria, namely, the total completion time, the total weighted completion time, the discounted total weighted completion time, and the sum of the quadratic job completion times. We present heuristic algorithms by using the optimal permutations for the corresponding single-machine scheduling problems. We also analyse the worst-case bound of our heuristic algorithms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.