Abstract

Ozone (O3) pollution has emerged as a major air quality issue in China. Here we emphasize the great challenges in controlling O3 pollution by analyzing the recent experience of the Pearl River Delta (PRD) in southern China in reducing the autumn O3 peaks. Despite significant reductions in the concentration of O3 precursors, i.e., nitrogen oxides (NOx) and volatile organic compounds (VOCs), regional O3 pollution in the PRD was largely worse in autumn 2019 than in autumn 2018. We found that the supra-regional and regional background concentrations of O3 increased significantly in the PRD in autumn 2019 due to increased concentrations of O3 in the vast surrounding areas. We also observed slight increases in the concentrations of PRD-regionally and Guangzhou-locally produced O3. A chemical box-model analysis confirmed a slight increase in the in-situ production of O3 and revealed that increased biogenic VOCs (BVOCs) and decreased NOx levels negated the effect of significant decrease in the anthropogenic VOCs. Taken together, these aspects exacerbated O3 pollution in the PRD region in autumn 2019 relative to autumn 2018. The findings from this study highlight the strong interactions of O3 pollution over multiple regions and the need for collaborative inter-regional efforts to control O3 pollution. The experience of PRD also underlines the key role of BVOCs and the importance of science-based strategies to decrease VOCs and NOx.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call