Abstract
A worm-like mesoporous structured iron-based fluoride (Fe1.9F4.75·0.95H2O) is successfully synthesized for the first time by a rapid microwave irradiation heating route using ionic liquid 1-butyl-3-methylimidazolium tetrafluoroborate (BmimBF4) as fluorine source and iron (III) nitrate nonahydrate (Fe(NO3)3·9H2O) as iron source. By controlling the amount of ionic liquid, a series of nanostructured iron-based fluoride materials with different morphologies are obtained. A possible formation mechanism related to the role of the ionic liquid is proposed. The electrochemical performances of the worm-like mesoporous structured iron-based fluoride as cathodes for rechargeable lithium batteries are investigated. A high discharge plateau around 2.7 V at the first cycle, a reversible discharge capacity as high as 145 mAh g−1 at a current density of 14 mA g−1 and a good rate performance with a high rate capacity of 125 mAh g−1 even at 71 mA g−1 are obtained.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.