Abstract
Wormhole geometries in curvature-matter coupled modified gravity are explored, by considering an explicit nonminimal coupling between an arbitrary function of the scalar curvature, R, and the Lagrangian density of matter. It is the effective stress-energy tensor containing the coupling between matter and the higher order curvature derivatives that is responsible for the null energy condition violation, and consequently for supporting the respective wormhole geometries. The general restrictions imposed by the null energy condition violation are presented in the presence of a nonminimal R-matter coupling. Furthermore, obtaining exact solutions to the gravitational field equations is extremely difficult due to the nonlinearity of the equations, although the problem is mathematically well-defined. Thus, we outline several approaches for finding wormhole solutions, and deduce an exact solution by considering a linear R nonmiminal curvature-matter coupling and by considering an explicit monotonically decreasing function for the energy density. Although it is difficult to find exact solutions of matter threading the wormhole satisfying the energy conditions at the throat, an exact solution is found where the nonminimal coupling does indeed minimize the violation of the null energy condition of normal matter at the throat.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.