Abstract

In recent years, the worms that had a dramatic increase in the frequency and virulence of such outbreaks have become one of the major threats to the security of the Internet. In this paper, we provide a worm propagating model. It bases on the classical epidemic Kermack-Kermack model, adopts dynamic quarantine strategy, dynamic infecting rate and removing rate. The analysis shows that model can efficiently reduce a worm's propagation speed, which can give us more precious time to defend it, and reduce the negative influence of worms. The simulation results verify the effectiveness of the model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.