Abstract

개체 추출은 원격탐사 분야의 주된 연구분야 중 하나로, 고해상도 위성영상의 활용도가 높아짐에 따라 보다 세밀하고 특정적인 개체를 추출할 수 있게 되었다. 기존의 화소 기반의 영상 처리 기법들은 고해상도 위성영상의 분광 및 기하학적인 다양성과 복잡성을 제대로 반영하기 어렵기 때문에 근래에는 영상분할 기술을 기반으로 하는 많은 연구가 진행되고 있다. 그런데 단순히 RGB 밴드 영상에 한 가지 영상분할 기법을 적용하는 것으로는 다양한 분광 특성과 형태를 갖는 여러 대상 개체들을 추출하는데 한계가 있다. 지표면의 피복의 종류를 식별하고, 상태를 모니터링 하는데 효과적인 분광지수는 개체 추출 과정에 효율적으로 이용할 수 있다. 본 연구에서는 영상분할 기술을 기반으로 하여 분광지수를 이용한 보다 효과적인 개체 추출 기술을 제안하고자 하였다. 다양한 종류의 개체를 추출하기 위하여 의사결정 트리 분류 기술을 사용하였으며 고해상도 위성인 WorldView-2의 8밴드 다중분광 영상을 이용한 실험을 통해 각 대상 개체를 추출하기에 적합한 분광지수들을 선택하고 이의 효용성을 평가해보고자 하였다. 그 결과, 건물, 도로, 나지, 식생, 수계, 그림자의 6개 클래스에 대한 개체들을 선택적으로 분류할 수 있었고, 식생지수를 비롯한 다양한 분광지수들이 각 개체의 종류를 선별해내는데 효과적으로 사용될 수 있음을 확인하였다. Feature extraction is one of the main goals in many remote sensing analyses. After high-resolution imagery became more available, it became possible to extract more detailed and specific features. Thus, considerable image segmentation algorithms have been developed, because traditional pixel-based analysis proved insufficient for high-resolution imagery due to its inability to handle the internal variability of complex scenes. However, the individual segmentation method, which simply uses color layers, is limited in its ability to extract various target features with different spectral and shape characteristics. Spectral indices can be used to support effective feature extraction by helping to identify abundant surface materials. This study aims to evaluate a feature extraction method based on a segmentation technique with spectral indices. We tested the extraction of diverse target features-such as buildings, vegetation, water, and shadows from eight band WorldView-2 satellite image using decision tree classification and used the result to draw the appropriate spectral indices for each specific feature extraction. From the results, We identified that spectral band ratios can be applied to distinguish feature classes simply and effectively.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.