Abstract
A novel sloped interconnect for the efficient delivery of long genomic DNA fragments into a microfluidic channel is designed, fabricated and tested. Out-of-plane slopes are fabricated in silicon wafers using the deep reactive-ion etch lag phenomenon and a combination of anisotropic and isotropic etching. The final structure is capped with anodically bonded glass. Based upon a series of etch-lag calibration studies, the interconnect was designed using finite element analysis to provide a channel with flow acceleration properties appropriate to straighten DNA molecules. The efficiency of transit of the 48.5 kb DNA fragments (∼16.5 µm long when fully extended) through the microfluidic device, established using quantitative real-time polymerase chain reaction, is 95 ± 7.3%.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.