Abstract

Stewart Platform Mechanism (SPM) is a type of parallel mechanism (PM) which has 6 degrees of freedom. Due to features like precise positioning and high load carrying capacity, PMs have been used in many areas in recent years. But relatively small workspace of the mechanism is the major disadvantage. This paper aims to improve the method for PM workspace analysis. The structure of Artificial Neural Network (ANN) which was used to analyze 6×3 SPM's workspace, is determined by Genetic Algorithms (GA). This structure of ANNs, i.e., weights, biases are very effective on catching highly accurate results of the ANNs. Therefore, calculation of these values and appropriate structure, i.e., number of neurons in hidden layers, by trial and error approach, results in spending too much time. To prevent the loss time and to determine the problem most fitted structure of hidden layers, a GA is developed and tested in simulation environment, i.e., software developed data. It is noted that by using software-calculated-parameters instead of using trial-error-approach parameters gives the user as accurate as trial-error-approach in short time span.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.