Abstract

Summary form only given: RNA-Seq uses the high-throughput sequencing technology to identify and quantify transcriptome at an unprecedented high resolution and low cost. However, RNA-Seq reads are usually not uniformly distributed and biases in RNA-Seq data post great challenges in many applications including transcriptome assembly and the expression level estimation of genes or isoforms. Much effort has been made in the literature to calibrate the expression level estimation from biased RNA-Seq data, but the effect of biases on transcriptome assembly remains largely unexplored. Here, we propose a statistical framework for both transcriptome assembly and isoform expression level estimation from biased RNA-Seq data. Using a quasi-multinomial distribution model, our method is able to capture various types of RNA-Seq biases, including positional, sequencing and mappability biases. Our experimental resultson simulated and real RNA-Seq datasets exhibit interesting effects of RNA-Seq biases on both transcriptome assembly and isoform expression level estimation. The advantage of our method is clearly shown in the experimental analysis by its high sensitivity and precision in transcriptome assembly and the high concordance of its estimated expression levels with qRT-PCR data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.