Abstract

Workpiece placement plays a crucial role when performing complex surface machining task robotically. If the feasibility of a robotic task needs to be guaranteed, the maximum available capabilities should be higher than the joint capabilities required for task execution. This can be challenging, especially when performing a complex surface machining task with a collaborative robot, which tend to have lower motion capabilities than conventional industrial robots. Therefore, the kinematic and dynamic capabilities within the robot workspace should be evaluated prior to task execution and optimized considering specific task requirements. In order to estimate maximum directional kinematic capabilities considering the requirements of the surface machining task in a physically consistent and accurate way, the Decomposed Twist Feasibility (DTF) method will be used in this paper. Estimation of the total kinematic performance capabilities can be determined accurately and simply using this method, adjusted specifically for robotic surface machining purposes. In this study, we present the numerical results that prove the effectiveness of the DTF method in identifying the optimal placement of predetermined machining tasks within the robot’s workspace that requires lowest possible joint velocities for task execution. These findings highlight the practicality of the DTF method in enhancing the feasibility of complex robotic surface machining operations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.