Abstract

Recent studies have identified disk storage systems as one of the major consumers of power in data centers. Many disk power management (DPM) schemes were suggested where the power consumed by disks is reduced by spinning them down during long idle periods. Spinning the disks down and up results in additional energy and response time costs. For that reason, DPM schemes are effective only if the disks experience relatively long idle periods and the scheme does not introduce a severe response time penalty. In this paper we introduce a dynamic block exchange algorithm which switches data between disks based on the observed workload such that frequently accessed blocks end up residing on a few “hot” disks thus allowing the majority of disks to experience longer idle periods. We validate the effectiveness of the algorithm with trace-driven simulations showing power savings of up to 50% with very small response time penalties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.