Abstract

The purpose of this paper is to report on research conducted to examine the effectiveness of different scheduling policies in a dual-constrained job shop under various workload conditions. The standard assumption in most job shop scheduling research has been that a 90% utilization of the shop is achieved. However, since shop utilization levels vary widely, it was hypothesized that scheduling policies that are optimum under one load condition might not be as effective under other load conditions. The model for this simulation experiment represented a job shop constrained by both labor and machines. The shop contains four machine centers with random routing of jobs through the shop. Shop workload was defined at three levels: 70, 85 and 99% utilization. Four machine scheduling rules and three labor assignment rules were tested for each of the shop workload levels, with mean job flow time as. the performance criterion. The results of the 3 × 4 × 3 factorial experiment showed that the advantage of the SPT (shortest processing time) machine scheduling rule over other rules is diminished dramatically when shop utilization is reduced from 99 to 85% or below. This same observation holds for other rules considered. The LNQ (longest queue length) labor assignment rule outperformed other rules at the 99% utilization level, but yielded no significant difference in performance at the 85% and below workload levels.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.