Abstract

Social Internet of Things (SIoT) has gained much interest among different research groups in recent times. As a key member of a smart city, the vehicular domain of SIoT (SIoV) is also undergoing steep development. In the SIoV, vehicles work as sensor-hub to capture surrounding information using the in-vehicle and Smartphone sensors and later publish them for the consumers. A cloud centric cyber-physical system better describes the SIoV model where physical sensing-actuation process affects the cloud based service sharing or computation in a feedback loop or vice versa. The cyber based social relationship abstraction enables distributed, easily navigable and scalable peer-to-peer communication among the SIoV subsystems. These cyber-physical interactions involve a huge amount of data and it is difficult to form a real instance of the system to test the feasibility of SIoV applications. In this paper, we propose an analytical model to measure the workloads of various subsystems involved in the SIoV process. We present the basic model which is further extended to incorporate complex scenarios. We provide extensive simulation results for different parameter settings of the SIoV system. The findings of the analyses are further used to design example adaptation strategies for the SIoV subsystems which would foster deployment of intelligent transport systems.

Highlights

  • Sensing-as-a-service (SenAS) [1] is a new model to describe the Ubiquitous Computing (Ubicomp) or the Internet of Things (IoT) where four conceptual layers are involved from the data provider to the consumption process

  • Social Internet of Vehicles is a cloud based cyber-physical approach to tackle the internet of vehicles related issues in a more scalable and distributed manner

  • The cyber layer of the Social Internet of Vehicles (SIoV) eases the integration of different IoT domains

Read more

Summary

Introduction

Sensing-as-a-service (SenAS) [1] is a new model to describe the Ubiquitous Computing (Ubicomp) or the Internet of Things (IoT) where four conceptual layers are involved from the data provider to the consumption process. The new paradigm of SIoT is receiving increased interest from the research community as it perfectly coincides with the social networks, IoT, service oriented architecture and the cloud computing. In the SIoT, the services of the things are navigated using the social network of things or humans but it requires domain specific knowledge, e.g., vehicle specific design decisions are required to build SIoV. SIoV offers a new approach to tackle the intelligent transport system (ITS) related issues when number of vehicles are increasing dramatically and most of the technologies are embracing more of cloud computing and service oriented architecture.

Related Works
Social Internet of Vehicles
The Basic Model
Assumptions
Event Definition
Interaction Data
Performance Measures
Extension of the Basic Model
Multiple Vehicles Scenario
Multiple Infrastructures Scenario
Multiple Homes Scenario
Social Graph Data Cloud Workload
SIoV Characteristics Analysis
Simulation Setup
Relationship of Subsystem Storage Requirements
Effect of Communication Range
Dynamic Adaptation Strategy of the SIoV
Vehicle Adaptation Strategy
Infrastructure Adaptation Strategy
Home Adaptation Strategy
Conclusions and Future Works

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.