Abstract

PurposeThis paper aims to develop a dynamic two-sided stable matching method based on preference information of the matching objects in uncertain environments, so as to solve the matching problem of cloud manufacturing tasks and services with load balancing.Design/methodology/approachFor dynamic two-sided matching, due to the complexity of social environment and the limitation of human cognition, hesitation and fuzziness always exist in the process of multi-criteria assessment. First, in order to obtain the accurate preference information of each matching object, uncertain linguistic variables, uncertain preference ordinal and incomplete complementary matrices are used to evaluate multi-criteria preference information. This process is undertaken by considering the probability of each possible matching pair. Second, the preference information at different times is integrated by using the time-series weight to obtain the comprehensive satisfaction degree matrices of the matching objects. Further, the load adjustment parameter is used to increase the satisfaction degree of the matching objects. Afterward, a dynamic two-sided stable matching optimization model is constructed by considering stable matching conditions. The model aims to maximize the satisfaction degree and minimizes the difference in the satisfaction degree of matching objects. The optimal stable matching results can be obtained by solving the optimization model. Finally, a numerical example and comparative analysis are presented to demonstrate the characteristics of the proposed method.FindingsUncertain linguistic variables, uncertain preference orders and incomplete complementary matrices are used to describe multi-criteria preference information of the matching objects in uncertain environments. A dynamic two-sided stable matching method is proposed, based on which a DTSMDM (dynamic two-sided matching decision-making) model of cloud manufacturing with load balancing can be constructed. The study proved that the authors can use the proposed method to obtain stable matching pairs and higher matching objective value through comparative analysis and the sensitivity analysis.Originality/valueA new method for the two-sided matching decision-making problem of cloud manufacturing with load balancing is proposed in this paper, which allows the matching objects to elicit language evaluation under uncertain environment more flexibly to implement dynamic two-sided matching based on preference information at different times. This method is suitable for dealing with a variety of TSMDM (two-sided matching decision-making) problems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.