Abstract

The emerging open cloud computing model will provide users with great freedom to dynamically migrate virtualized computing services to, from, and between clouds over the wide-area. While this freedom leads to many potential benefits, the running services must be minimally disrupted by the migration. Unfortunately, current solutions for wide-area migration incur too much disruption as they will significantly slow down storage I/O operations during migration. The resulting increase in service latency could be very costly to a business. This paper presents a novel storage migration scheduling algorithm that can greatly improve storage I/O performance during wide-area migration. Our algorithm is unique in that it considers individual virtual machine's storage I/O workload such as temporal locality, spatial locality and popularity characteristics to compute an efficient data transfer schedule. Using a fully implemented system on KVM and a trace-driven framework, we show that our algorithm provides large performance benefits across a wide range of popular virtual machine workloads.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.