Abstract
Heterogeneous MPSoCs are being used more and more, from cellphones to critical embedded systems. Most of those systems offer heterogeneous sets of identical cores. In this paper, we propose new results on the global scheduling approach. We extend fundamental global scheduling results on unrelated processors to results on unrelated multicore platforms, a more realistic model. We introduce several methods to construct the workload assignment of tasks to cores taking advantage of this new model. Every studied result is optimal regarding schedulability, and all the proposed methods but one have a polynomial time complexity. Thanks to the model, the produced schedules have a limited degree of migrations. The benefits of the methods are demonstrated and compared using synthetic tasks sets. Practical limitations of the global scheduling approach on unrelated platforms are discussed, but we argue that it is still worth investigating considering modern MPSoCs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.