Abstract

With continuously shrinking technology, reliability issues such as Negative Bias Temperature Instability (NBTI) has resulted in considerable degradation of device performance, and eventually the short mean-time-to-failure (MTTF) of the whole multicore system. This article proposes a new workload balancing scheme based on device-level fractional NBTI model to balance the workload among active cores while relaxing stressed ones. Starting with NBTI-induced threshold voltage degradation, we define a concept of Capacity Rate (CR) as an indication of one core's ability to accept workload. Capacity rate captures core's performance variability in terms of delay and power metrics under the impact of NBTI aging. The proposed workload balancing framework employs the capacity rates as workload constraints, applies a Dynamic Zoning (DZ) algorithm to group cores into zones to process task flows, and then uses Dynamic Task Scheduling (DTS) to allocate tasks in each zone with balanced workload and minimum communication cost. Experimental results on a 64-core system show that by allowing a small part of the cores to relax over a short time period, the proposed methodology improves multicore system yield (percentage of core failures) by 20%, while extending MTTF by 30% with insignificant degradation in performance (less than 3%).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.