Abstract

Aqueous zinc-air batteries possess inherent safety and are especially commendable facing high-temperature working conditions. However, their working feasibility at high temperatures has seldom been investigated. Herein, the working feasibility of high-temperature zinc-air batteries is systemically investigated. The effects of temperature on air cathode, zinc anode, and aqueous electrolyte are decoupled to identify the favorable and unfavorable factors. Specifically, parasitic hydrogen evolution reaction strengthens at high temperatures and leads to declined anode Faraday efficiency, which is identified as the main bottleneck. Moreover, zinc-air batteries demonstrate cycling feasibility at 80 °C. This work reveals the potential of zinc-air batteries to satisfy energy storage at high temperatures and guides further development of advanced batteries towards harsh working conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call