Abstract

Imaging the low-frequency radio Sun is an intrinsically challenging problem. Meter-wavelength solar emission spans angular scales from a few arcminutes to a few degrees. These emissions show temporal and spectral variability on sub-second and sub-MHz scales. The brightness temperature of these emissions also varies by many orders of magnitude, which requires high-dynamic-range spectroscopic snapshot imaging. With the unique array configuration of the Murchison Widefield Array (MWA) and the robust calibration and imaging pipeline, Automated Imaging Routine for the Compact Arrays for the Radio Sun (AIRCARS) produces the best spectroscopic snapshot solar images available to date. The working principle and the strength of this algorithm are demonstrated using statistical analysis and simulation. AIRCARS uses the partial phase stability of the MWA, which has a compact core with many antenna elements distributed over a small array footprint. The strength of this algorithm makes it a state-of-the-art calibration and imaging pipeline for low-frequency solar imaging, which is expected to be highly suitable for the upcoming Square Kilometre Array (SKA) and other future radio interferometers for producing high-dynamic-range and high-fidelity images of the Sun.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.