Abstract

Previous studies have shown that astrocytes are involved in information processing and working memory (WM) in the central nervous system. Here, the neuron-astrocyte network model with biological properties is built to study the effects of excitatory-inhibitory balance and neural network structures on WM tasks. It is found that the performance metrics of WM tasks under the scale-free network are higher than other network structures, and the WM task can be successfully completed when the proportion of excitatory neurons in the network exceeds 30%. There exists an optimal region for the proportion of excitatory neurons and synaptic weight that the memory performance metrics of the WM tasks are higher. The multi-item WM task shows that the spatial calcium patterns for different items overlap significantly in the astrocyte network, which is consistent with the formation of cognitive memory in the brain. Moreover, complex image tasks show that cued recall can significantly reduce systematic noise and maintain the stability of the WM tasks. The results may contribute to understand the mechanisms of WM formation and provide some inspirations into the dynamic storage and recall of memory.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.