Abstract

Abstract The performance of different working fluids to recover low-temperature heat source is studied. A simple Rankine cycle with subcritical configuration is considered. This work is to screen working fluids based on power production capability and component (heat exchanger and turbine) size requirements. Working fluids considered are R134a, R123, R227ea, R245fa, R290, and n-pentane. Energy balance is carried out to predict operating conditions of the process. Outputs of energy balance are used as input for exergy analysis and components (heat exchanger and turbine) design. The heat exchanger is divided into small intervals so that logarithmic mean temperature difference (LMTD) method is applicable. R227ea gives highest power for heat source temperature range of 80–160 °C and R245fa produces the highest in the range of 160–200 °C. There is optimal pressure where the heat exchanger surface area is minimum. This optimal pressure changes with heat source temperature and working fluid used. The least heat exchanger area required at constant power rating is found when the working fluid is n-pentane. At lower heat source temperature (80 °C), the maximum power output and minimum heat exchanger surface area for different working fluids is comparable.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.