Abstract

Workflows orchestrate a collection of computing tasks to form a complex workflow logic. Different from the traditional monolithic workflow management systems, modern workflow systems often manifest high throughput, concurrency and scalability. As service-based systems, execution time monitoring is an important part of maintaining the performance for those systems. We developed a trace profiling approach that leverages quantitative verification (also known as probabilistic model checking) to analyse complex time metrics for workflow traces. The strength of probabilistic model checking lies in the ability of expressing various temporal properties for a stochastic system model and performing automated quantitative verification. We employ semi-Makrov chains (SMCs) as the formal model and consider the first passage times (FPT) measures in the SMCs. Our approach maintains simple mergeable data summaries of the workflow executions and computes the moment parameters for FPT efficiently. We describe an application of our approach to AWS Step Functions, a notable workflow web service. An empirical evaluation shows that our approach is efficient for computer high-order FPT moments for sizeable workflows in practice. It can compute up to the fourth moment for a large workflow model with 10,000 states within 70 s.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.