Abstract

Achilles tendon rupture (ATR) incidence has increased among badminton players in recent years. The foot internal stress was hard to obtain through experimental testing. The purpose of the current research is to develop a methodology that could improve the finite element model derived foot internal stress prediction for ATR clinical and rehabilitation applications. A subject-specific musculoskeletal model was combined with a 3D finite element model to predict the metatarsal stress. The 80% point during the push-off phase of walking was selected for the comparing between injured and uninjured sides. The surgical repaired Achilles tendon (AT) after 12 months was elongated by 5.5% than the uninjured tendon. At 80% point of stance phase, the ankle plantarflexion angle and AT force decreased by 39.6% and 21.9% on the injured side, respectively. The foot inversion degree increased by 22.9% and was accompanied by the redistribution of metatarsals von Mises stress. The stresses on the fourth and fifth metatarsals were increased by 59.5% and 85.9% on the injured side. The workflow is available to assess musculoskeletal disorders and obtain foot internal stress after ATR. The decreased ankle plantar flexor force may be affected by triceps surae muscle atrophy and weakened force transmission ability of elongated AT. The increased von Mises stress on fourth and fifth metatarsals accompanied by higher foot inversion may increase the ankle lateral sprain injury risk.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call