Abstract
A scientific workflow, usually consists of a good mix of fine and coarse computational granularity tasks displaying varied runtime requirements. It has been observed that fine grained tasks incur more scheduling overhead than their execution time, when executed on widely distributed platforms. Task clustering is extensively used, in such situations, as a runtime optimization method which involves combining multiple short duration tasks into a cluster, to be scheduled on a single resource. This helps in minimizing the scheduling overheads of the fine grained tasks. However, tasks grouping curtails the degree of parallelism and hence needs to be done optimally. Though a number of task clustering techniques have been developed to reduce the impact of system overheads, they fail to identify the appropriate number of clusters at each level of workflow in order to achieve maximum possible parallelism. This work proposes a level based autonomic Workflow-and-Platform Aware (WPA) task clustering technique which takes into consideration both; the workflow structure and the underlying resource set size for task clustering. It aims to achieve maximum possible parallelism among the tasks at a level of a workflow while minimizing the system overheads and resource wastage. A comparative study with current state of the art task clustering approaches on four well-known scientific workflows show that the proposed method significantly reduces the overall workflow execution time and at the same time is able to consolidate the load onto minimum possible resources.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.