Abstract

Abstract. Nowadays monitoring of mining areas, e.g., regarding dam stability, has become increasingly important with rising awareness of safety and environmental protection. An appropriate monitoring scheme is necessitated to legally activate, reactivate, or terminate mining operations. Usually such monitoring relies on in situ surveys, which are unrealistic to cover an extensive mining area. Alternatively, remote sensing based on spaceborne data offers efficient and cost-effective solutions for regular surveillance of large areas. Spaceborne SAR sensors provide images captured rapidly over vast areas at fine spatiotemporal resolution. These sensors are characterized by weather independent and day-and-night vision, which guarantees intensive image series without cloud occlusion. Using multi-temporal SAR images, advanced DInSAR such as PSI and SBAS is a mature technique to evaluate surface deformation at best millimetre level. This technique has been commercialized as a standard service in many Geoinformation companies. Nevertheless, experts from other fields like mining engineers often doubt the information about movement derived from DInSAR. Our duty in industry is to solve these doubts and tailor our techniques for various applications. With the support of STINGS project, we have developed an initial prototype of our monitoring system. The final goal is to launch an interactive GIS-based platform as an early warning system to the public. In this paper, we demonstrate our initial test result using Sentinel-1 images at a mining site in Chile. We also propose the strategies to solve the problems in real applications and discuss how to improve the overall quality.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.