Abstract

Introduction: Palm oil fuel ash in two various forms-ground (GPOFA) by heat-treated carbon-free ultrafine of a median particle size of 2 μm (UPOFA) were utilized to produce high strength concretes (HSC-GPOFA (HSCgx), HSC-UPOFA (HSCux), and HSC-OPC) at different levels ordinary Portland cement (OPC) partial replacements (x) of 20, 40 and 60%. Methods: The workability (slump, slump loss, and compacting factor), initial and final setting times and strength in both forms of concrete were investigated. Results and Conclusion: The results showed that HSCu had improved physical properties and chemical compositions, extended setting times, enhanced workability, better strength, and enhanced workability retention compared to HSCg and HSC-OPC. Further, POFA carbon content negatively influenced the workability and setting time, while its specific gravity had a positive influence due to the enhancement of paste volume and particles lubrication effects. However, carbon content and surface areas of POFA did not significantly influence the compressive strength of HSC at the level of partial OPC substitution not exceeding 40%.

Highlights

  • Palm oil fuel ash in two various forms-ground (GPOFA) by heat-treated carbon-free ultrafine of a median particle size of 2 μm (UPOFA) were utilized to produce high strength concretes (HSC-ground palm oil fuel ash (POFA) (GPOFA) (HSCgx), HSC-ultra-fine POFA (UPOFA) (HSCux), and HSC-OPC) at different levels ordinary Portland cement (OPC) partial replacements (x) of 20, 40 and 60%

  • The present study investigates the impacts of carbon-laden POFA (GPOFA) on workability, setting times and compressive strength of HSC in comparison with ultrafine carbon-free type (UPOFA) at multiple levels of POFA-cement replacement of 0, 20, 40 and 60% by mass

  • The physical properties of the OPC and POFA showed that the heat treatment and the grinding process undertaken led to improvement in the physical characteristics and chemical compositions of the POFA

Read more

Summary

Introduction

Palm oil fuel ash in two various forms-ground (GPOFA) by heat-treated carbon-free ultrafine of a median particle size of 2 μm (UPOFA) were utilized to produce high strength concretes (HSC-GPOFA (HSCgx), HSC-UPOFA (HSCux), and HSC-OPC) at different levels ordinary Portland cement (OPC) partial replacements (x) of 20, 40 and 60%

Results and Conclusion
INTRODUCTION
Materials
Mix Proportions and Samples Preparation
Chemical Compositions and Physical Properties of POFA
Compressive Strength
Physical Properties and Chemical Compositions of POFA
Effect of POFA on Workability
Effect of POFA on Workability Retention
Effect of POFA on Setting Times
CONCLUSION
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.