Abstract

High silicon steel (up to 6.5 wt.-%Si) is important for the electrical industry because of its magnetic properties. However, its production in low thickness by cold rolling is difficult due to extreme brittleness, mainly caused by ordering processes, making dislocation motion more complex. Nevertheless, these materials appear to be deformable at higher temperatures. The cooling rate after hot deformation, the temperature from which it is cooled and the time delay prior to cold deformation are important elements for the understanding of their workability. Hot torsion tests were performed on Fe-Si steel (4.2 and 5.6 wt.-%Si) under continuous cooling to study the influence of strain and interpass time on ordering and non-recrystallization temperatures. Compression tests at a constant strain rate were used to study the effect of continuous cooling to RT and the delay time between deformations for series of silicon alloys (from 3.3 to 6.3 wt.-% Si) with different thermomechanical treatments. An aging phenomenon due to an ordering reaction at RT was observed. Finally, extrapolating the hot torsion and compression tests parameters to the rolling mill a suitable schedule for hot rolling was found guaranteeing good conditions for further cold rolling.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.