Abstract
Long-ranged correlations generically exist in nonequilibrium fluid systems. In the case of a nonequilibrium steady state caused by a temperature gradient, the correlations are especially long-ranged and strong. The anomalous light scattering predicted to exist in these systems is well-confirmed by numerous experiments. Recently, the Casimir force or pressure due to these fluctuations or correlations has been discussed in great detail. In this paper, the notion of a Casimir work is introduced, and an alternative way to measure the nonequilibrium Casimir force is suggested. In particular, the nonequilibrium Casimir force is related to nonequilibrium heat, and not, as in equilibrium, to a volume derivative of an average energy. The nonequilibrium work fluctuations are determined and shown to be very anomalous compared to equilibrium work fluctuations. The nonequilibrium work distribution is also computed, and it is contrasted with work distributions in systems with short-range correlations. Again, there is a striking difference in the two cases. Formal theories of work and work distributions in nonequilibrium steady states are not explicit enough to illustrate any of these interesting features.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.