Abstract
Bridging equilibrium and nonequilibrium statistical physics attracts sustained interest. Hallmarks of nonequilibrium systems include a breakdown of detailed balance, and an absence of a priori potential function corresponding to the Boltzmann-Gibbs distribution, without which classical equilibrium thermodynamical quantities could not be defined. Here, we construct dynamically the potential function through decomposing the system into a dissipative part and a conservative part, and develop a nonequilibrium theory by defining thermodynamical quantities based on the potential function. Concepts for equilibrium can thus be naturally extended to nonequilibrium steady state. We elucidate this procedure explicitly in a class of time-dependent linear diffusive systems without mathematical ambiguity. We further obtain the exact work distribution for an arbitrary control parameter, and work equalities connecting nonequilibrium steady states. Our results provide a direct generalization on Jarzynski equality and Crooks fluctuation theorem to systems without detailed balance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.