Abstract

Abstract : Changes in herbicide use in the Midwestern United States have been substantial over the last 5 years. Most significant is a tripling in the use of glyphosate (N-[phosphonomethyl]glycin). Over this same time period (1997-2001), atrazine use increased by 20 percent and acetochlor use increased by 10 percent, while cyanazine use decreased by 99 percent, alachlor use decreased by 70 percent, and metolachlor use decreased by 55 percent. Previous studies have documented that herbicide flushes occur in midwestern streams during runoff events for several weeks to several months following application, and that herbicide concentrations in midwestern streams during flushing events are related to rates of herbicide use. The objective of this study is to determine the distribution of glyphosate and its primary transformation product aminomethylphosphonic acid (AMPA) in midwestern streams during postapplication and harvest-season runoff events. Water samples will be collected in 2002 during two post-herbicide-application runoff events and one harvest-season runoff event from 53 sites on streams in the Midwestern United States. All samples will be analyzed at the U.S. Geological Survey Organic Geochemistry Research Laboratory in Lawrence, Kansas, for glyphosate and 20 other herbicides. Samples will also be analyzed for a glyphosate transformation product (AMPA) and 26 other herbicide transformation products, using GC/MS or HPLC/MS. Selected samples will be analyzed for 36 antibiotics or antibiotic transformational products. Results from this study will represent the first broad-scale investigation of glyphosate and AMPA in U.S. water resources.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.