Abstract
AbstractWe employ work optimization to predict the geometry of frontal thrusts at two stages of an evolving physical accretion experiment. Faults that produce the largest gains in efficiency, or change in external work per new fault area, ΔWext/ΔA, are considered most likely to develop. The predicted thrust geometry matches within 1 mm of the observed position and within a few degrees of the observed fault dip, for both the first forethrust and backthrust when the observed forethrust is active. The positions of the second backthrust and forethrust that produce >90% of the maximum ΔWext/ΔA also overlap the observed thrusts. The work optimal fault dips are within a few degrees of the fault dips that maximize the average Coulomb stress. Slip gradients along the detachment produce local elevated shear stresses and high strain energy density regions that promote thrust initiation near the detachment. The mechanical efficiency (Wext) of the system decreases at each of the two simulated stages of faulting and resembles the evolution of experimental force. The higher ΔWext/ΔA due to the development of the first pair relative to the second pair indicates that the development of new thrusts may lead to diminishing efficiency gains as the wedge evolves. The numerical estimates of work consumed by fault propagation overlap the range calculated from experimental force data and crustal faults. The integration of numerical and physical experiments provides a powerful approach that demonstrates the utility of work optimization to predict the development of faults.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.