Abstract

The effect of isothermal exposure and thermal cycling on the toughness of B/Al (1100), B/Al (6061), and A12O3/A1 composites has been investigated. In B/Al (1100), isothermal exposure at 773 K for 45 × 104 s (125 hours) reduced toughness, measured by the work of fracture, from 76 kJm-2 to 10 kJm-2, and a similar reduction occurred after equivalent thermal cycling. The corresponding reduction in toughness after isothermal exposure in B/Al (6061) was from 44.5 kJm-2 to 8 kJm-2; however, the effect of thermal cycling was less detrimental. In the FP-A12O3/A1 composite, the work of fracture was insensitive to both forms of thermal treatment. Changes in the toughness of the B/Al composites have been correlated with and analyzed in terms of modifications to matrix, fiber, and interface properties, in particular, matrix softening, interface reaction products, and fiber notch sensitivity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call