Abstract
The main goal of mechanical ventilation is to help restore gas exchange and reduce the work of breathing (WOB) by assisting respiratory muscle activity. Knowing the determinants of WOB is essential for the effective use of mechanical ventilation and also to assess patient readiness for weaning. The active contraction of the respiratory muscles causes the thoracic compartment to expand, inducing pleural pressure to decrease. This negative pressure generated by the respiratory pump normally produces lung expansion and a decrease in alveolar pressure, causing air to flow into the lung. This driving pressure can be generated in three ways: entirely by the ventilator, as positive airway pressure during passive inflation and controlled mechanical ventilation; entirely by the patient’s respiratory muscles during spontaneous unassisted breathing; or as a combination of the two, as in assisted mechanical ventilation. For positive-pressure ventilation to reduce WOB, there needs to be synchronous and smooth interaction between the ventilator and the respiratory muscles [1, 2, 3]. This note will concentrate on how to calculate the part of WOB generated by the patient’s respiratory muscles, especially during assisted ventilation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.