Abstract

Data-intensive applications, such as machine learning and pattern recognition, result in heavy Network-on-Chip (NoC) communication loads and a tremendous increase in the communication latency. At the same time, the error-tolerant nature of these applications makes approximate communication an effective way to relieve the sharp increase of the network latency. This paper proposes an adaptive congestion-aware approximate communication mechanism (ACAC) that can alleviate the communication congestion of NoC systems in heavy communication loads. Our cycle-accurate simulations have shown that the proposed ACAC effectively reduces the network latency similar to ABDTR under a 22% to 52% lower data approximate ratio and significantly decreases the additional compression control traffic volume under real applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.