Abstract

The work hardening behavior was investigated in ferritic steels containing hard particles or soft Cu particles with various volume fractions and particle diameters, and then the effect of plastically deformable soft particles on the work hardening was evaluated in terms of the accumulation of GN dislocations. The amount of work hardening and dislocation density increased with an increase of volume fraction of dispersion particles and a decrease of particle diameter in hard particle dispersion steel. On the other hand, in soft Cu particle dispersion steel, the effect of volume fraction and particle diameter on work hardening behavior was relatively small. TEM observation suggested that stress relaxation around particle takes place by plastic deformation of Cu particle itself. In order to consider the effect of plastic deformation of Cu particles on accumulation of GN dislocations, "particle plastic accommodation parameter" was proposed to modify the Ashby's work hardening theory. As a result, the amount of work hardening was successfully predicted for both the hard and soft particle dispersion steels

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call