Abstract

The work function reduction of various transparent conducting materials with 8-hydroxyquinolinolato-lithium (Liq) was investigated using in situ ultraviolet photoelectron spectroscopy (UPS) measurements. The work function of single-walled carbon nanotubes (SWCNTs), poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS), and indium tin oxide (ITO), was significantly reduced by 1.00, 1.08 and 0.50eV by depositing a 3.5nm-thick Liq layer. This originates from the interface dipole having its negative pole pointed toward each electrode. These work function reductions would enhance electron injection or extraction in inverted organic electronic devices. However, the high electron injection barriers from electrodes to Liq itself were observed (2.43–2.53eV), and thus an ultrathin Liq layer should be used for efficient electron injection through tunneling mechanism.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.