Abstract

Theoretical approaches to calculation of work function within jellium model and the problem of extension of this model to include the lattice corrections to the work function are briefly discussed. Lattice corrections to the work function obtained from the experiment are estimated and compared with those calculated theoretically. It is found that the mean value of the experimental lattice correction <δψ hkl> hkl compared to the mean work function is negligible. It is stated that the mean work function can be treated as a material constant characterizing a given metal, such as, e.g., binding energy.An expression for the dependence of jellium work function on r s, valid in a metallic range of r s, is given. A comparison between then theoretical and experimental results is presented and the role of correlation energy is examined. It is shown that more accurate approximations of the correlation energy than that given by Wigner's formula lead to a better agreement with experiment. A simple model is presented for explanation of work function changes on single crystal planes. Some recent results concerning the thermal dependence of work function are given. The dependence of the work function on the degree of coverage is discussed both for alkali and non-alkali atoms adsorption. Theoretical models are briefly reviewed and comparison between theory and experiment is made. A simple model is presented for explanation of the work function variation on rough planes in metallic non-alkali atoms chemisorption.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call