Abstract

AbstractWork function modification of electrodes is an important factor to achieve high performance in organic electronics. However, a clear explanation of the origin of work function modification has remained elusive. Here, it is investigated how the work function of electrodes is affected by the charge‐based through‐space interaction with the well‐known surface interaction. The studies reveal that the formation of a surface dipole leads to a work function shift, even when the work function modifying layer and substrate are separated. A work function shift is also demonstrated by electrophoretic deposition of ionic polyelectrolytes while the same polyelectrolytes do not cause any work function shift when they are spin cast. More noteworthy is that a neutral (nonionic) polymer which has no specific surface‐interacting functional groups can induce work function shift of its substrate by a charge‐based through‐space interaction when deposited by electrospraying. These results provide a more comprehensive understanding of work function modification and motivate the design and selection of a wide range of effective work function modifying layers for organic electronics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call